MOX–Report No. 12/2009 Coupling Biot and Navier-Stokes equations for modeling fluid-poroelastic media interaction

نویسندگان

  • Santiago Badia
  • Annalisa Quaini
  • Alfio Quarteroni
چکیده

The interaction between a fluid and a poroelastic structure is a complex problem that couples the Navier-Stokes equations with the Biot system. The finite element approximation of this problem is involved due to the fact that both subproblems are indefinite. In this work, we first design residual-based stabilization techniques for the Biot system, motivated by the variational multiscale approach. Then, we state the monolithic NavierStokes/Biot system with the appropriate transmission conditions at the interface. For the solution of the coupled system, we adopt both monolithic solvers and heterogeneous domain decomposition strategies. Different domain decomposition methods are considered and their convergence

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupling Biot and Navier-Stokes problems for fluid-poroelastic structure interaction

The interaction between a fluid and a poroelastic structure is a complex problem that couples the Navier-Stokes equations for the fluid with the Biot system for the structure. The finite element approximation of this problem is involved due to the fact that both subproblems are indefinite. In this work, we design residual-based stabilization techniques for the Biot system, that have been motiva...

متن کامل

An Algorithm for Modeling and Interpretation of Seismoelectric Data

Generally speaking, seismoelectric modeling is a prospecting method based on seismic and electromagnetic waves, in which waves generated by a seismic source at the boundary of the two environments generate a relative fluid-solid motion formed as a result of antagonism between the elastic properties of the environment with the saturated fluid. This research has as its objective, a study of the e...

متن کامل

Double Porosity Models for Liquid Filtration in Incompressible Poroelastic Media

Double porosity models for the liquid filtration in a naturally fractured reservoir is derived from the homogenization theory. The governing equations on the microscopic level consist of the stationary Stokes system for an incompressible viscous fluid, occupying a crack-pore space (liquid domain), and stationary Lame equations for an incompressible elastic solid skeleton, coupled with correspon...

متن کامل

The Mechanical Behavior of a Poroelastic Medium Saturated with a Newtonian Fluid

In this paper we systematically derive, via the theory of homogenization, the macroscopic equations for the mechanical behavior of a deformable porous medium saturated with a Newtonian fluid. The derivation is first based on the equations of linear elasticity in the solid, the Stokes equations for the fluid, and suitable conditions at the fluid-solid interface. A detailed comparison between the...

متن کامل

Self-Consistent Effective Equations Modeling Blood Flow in Medium-to-Large Compliant Arteries

We study the flow of an incompressible viscous fluid through a long tube with compliant walls. The flow is governed by a given time dependent pressure head difference. The Navier-Stokes equations for an incompressible viscous fluid are used to model the flow, and the Navier equations for a curved, linearly elastic membrane to model the wall. Employing the asymptotic techniques typically used in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009